refik.in.ua   1 ... 10 11 12 13 14

Бомба
Самым неудачным образом все рассуждения по поводу этих занимательных парадоксов были прерваны выдвижением Гитлера в канцлеры в 1933 году и лихорадочной гонкой по созданию первой атомной бомбы. В течение многих лет было известно (из знаменитого уравнения Эйнштейна Е = тс2), что атом является закрытым хранилищем огромных количеств энергии. Но большинство физиков несерьезно относились к мысли об использовании этой энергии. Даже Эрнст Резерфорд, человек, открывший ядро атома, сказал: «Энергия, освобождаемая при разбивании ядра атома, очень незначительна. Любой, кто рассчитывает найти источник энергии в трансформации атомов, несет вздор».

В 1939 году Бор предпринял судьбоносную поездку в Соединенные Штаты, приземлившись в Нью-Йорке для встречи со своим учеником Джоном Уилером. Бор вез зловещие новости: Отто Хан и Лиз Майтнер доказали, что атом урана можно разбить надвое; в этом процессе, называемом расщеплением атома, освобождалась энергия. Бор и Уилер начали разрабатывать квантовую динамику ядерного деления. Поскольку все в квантовой теории основано на вероятности и случайности, они вычислили вероятность того, что нейтрон расщепит ядро урана, освободив тем самым два или более нейтронов, которые, в свою очередь, расщепят еще большее количество ядер атомов урана, в результате чего освободится еще больше нейтронов, и так далее, что запустит цепную реакцию, способную разрушить целый город. (В квантовой механике никогда не знаешь, расщепит ли отдельный конкретный нейтрон атом урана, но можно с невероятной точностью вычислить вероятность того, что миллиарды атомов урана расщепятся в бомбе. В этом и состоит сила квантовой механики.)

Их квантовые расчеты показали, что существование атомной бомбы вполне возможно. Два месяца спустя Бор, Юджин Вигнер, Лео Сцилард и Уилер встретились в старом кабинете Эйнштейна в Принстоне, чтобы обсудить перспективы создания атомной бомбы.

Бор считал, что для создания бомбы понадобятся ресурсы всей на» ции. (Несколько лет спустя Сцилард убедит Эйнштейна написать судьбоносное письмо Президенту Франклину Рузвельту, где настоятельно рекомендовалось сконструировать атомную бомбу)


В том же году нацисты, узнав о том, что огромное количество энергии, испускаемое атомом урана, может дать им непобедимое оружие, велели ученику Бора Гейзенбергу создать атомную бомбу для Гитлера. Неожиданно все разговоры о квантовых вероятностях распада стали в высшей степени серьезными: на карту была поставлена судьба всего человечества. На смену спорам о вероятности обнаружения живых котов пришли споры о вероятности расщепления урана.

В 1941 году, когда нацисты держали под контролем большую часть Европы, Гейзенберг тайно навестил своего старого преподавателя Бора в Копенгагене. До сих пор завеса тайны покрывает то, в каком ключе проходила их беседа; об этом написаны отмеченные наградами пьесы, а историки до сих пор спорят о содержании встречи. Предлагал ли Гейзенберг саботировать создание германской атомной бомбы? Или, наоборот, он пытался завербовать Бора для работы по созданию атомной бомбы для нацистов? В 2002 году, шесть десятилетий спустя, завеса тайны над намерениями Гейзенберга была частично приподнята, когда родные Бора опубликовали письмо Бора, написанное Гейзенбергу уже в 50-е годы, но так и не отправленное. В письме Бор вспоминал, что на той встрече Гейзенберг назвал победу нацистов неизбежной. Поскольку остановить непробиваемую машину нацизма нельзя, то было бы только логично, если бы Бор работал на нацистов.

Бор был потрясен и шокирован до глубины души. Дрожа от негодования, он отказался отдать свою работу над квантовой теорией в руки нацистов. Поскольку Дания находилась под контролем нацистов, Бор спланировал тайный побег на самолете, во время которого он чуть не задохнулся из-за нехватки кислорода.

А тем временем в Колумбийском университете Энрико Ферми доказал, что ядерная цепная реакция осуществима. Придя к этому выводу, он окинул взглядом Нью-Йорк и осознал, что одна-един-ственная бомба может полностью уничтожить знаменитый город. Когда Уилер увидел, как высоко поднялись ставки, он добровольно оставил Принстон и присоединился к Ферми в лаборатории под университетским стадионом Стэгт-Филд в Чикаго, где они вместе создали первый ядерный реактор, тем самым ознаменовав официальное начало ядерной эпохи.


На протяжении последовавших десяти лет Уилеру выпало стать свидетелем самых важных событий в ходе атомной войны. Во время войны он помогал контролировать строительство исполинского ядерного центра в Хэнфорде (штат Вашингтон), где вырабатывался сырой плутоний, необходимый для создания бомб, которые затем уничтожили Нагасаки. Еще через несколько лет он работал над созданием водородной бомбы и в 1952 году стал свидетелем первого ее взрыва, а также разрушений, вызванных сбросом кусочка Солнца на небольшой островок в Тихом океане. Однако, более десяти лет пробыв на первых страницах истории, в конце концов Уилер все же вернулся к своей первой любви — загадкам квантовой теории.
Суммирование по траекториям
Одним из многих учеников Уилера в послевоенные годы был Ричард Фейнман, который нашел, возможно, простейший и в то же время самый глубокий способ суммировать сложности квантовой теории. (Одним из следствий стало присуждение Фейнману Нобелевской премии в 1965 году.) Представим, что вы хотите пройти через комнату. По Ньютону, вы просто-напросто выберете кратчайший путь от точки А к точке Б, называемый классическим. Но по Фейнману, прежде всего вы должны учесть все возможные пути, соединяющие точки А и Б. Это означает, что вы должны принять во внимание пути, которые приведут вас на Марс, Юпитер, к ближайшей звезде, даже те пути, которые ведут назад во времени, к моменту Большого Взрыва. Не имеет значения, насколько сумасшедшими и причудливыми будут эти пути, — вы все равно должны их учитывать. Затем Фейнман приписал каждому пути определенную величину, а также привел свод точных правил, руководствуясь которыми можно было бы эту величину определить. Самым чудесным образом, сложив эти величины всех возможных путей, вы находите вероятность перехода из точки А в точку Б, которая дается обычной квантовой механикой. Это было поистине замечательно.

Фейнман обнаружил, что сумма этих величин, приписываемых причудливым и противоречащим законам Ньютона путям, обычно уравновешивалась и давала небольшое число. Такова была природа квантовых флуктуации — они представляли пути, сумма которых была очень мала. Но Фейнман также обнаружил, что избранный на основе здравого смысла ньютоновский путь не уравновешивался, а обладал максимальной итоговой величиной — это был путь с наибольшей вероятностью. Таким образом, наше представление о физической вселенной, основанное на здравом смысле, является просто-напросто наиболее вероятным состоянием из бесконечного количества возможных. Но мы сосуществуем со всеми возможными состояниями, некоторые из них перенесли бы нас в эпоху динозавров, к ближайшей сверхновой или на окраину Вселенной. (Эти причудливые пути создают мельчайшие отклонения от ньютонианского пути, избранного на основе здравого смысла, но, к счастью, обладают очень малой вероятностью.)


Иными словами, как бы странно это ни выглядело, каждый раз, как вы идете через комнату, ваше тело заблаговременно «обнюхивает» все возможные пути, даже те, что ведут к далеким квазарам и Большому Взрыву, а затем все их складывает. Используя мощный математический аппарат, называемый функциональным интегрированием, Фейнман показал, что ньютоновский путь — всего лишь наиболее вероятный, но не единственный. Совершив блестящий математический подвиг, Фейнман смог доказать, что эта картина, какой бы ошеломляющей она ни казалась, полностью эквивалентна обычной квантовой механике.

Сила фейнмановского «суммирования по траекториям» состоит в том, что сегодня, когда мы формулируем теории ТВО, теорию инфляции и даже струнную теорию, мы пользуемся подходом Фейнмана, основанным на интегралах по траекториям. Этот метод преподается сейчас во всех университетах мира и на сегодняшний день является самым эффективным и удобным способом формулировки квантовой теории.

(Я сам каждый день в своих исследованиях пользуюсь подходом Фейнмана, основанным на обобщении интегралов по траекториям. Каждое уравнение, которое я пишу, выводится на основе суммирования по траекториям. Когда в бытность студентом я впервые узнал о подходе Фейнмана, он изменил все мое ментальное представление о вселенной. Умом я понимал абстрактную математику квантовой теории и общей теории относительности, но изменила мое мировоззрение именно та идея, что, просто проходя по комнате, я каким-то образом исследую пути, которые могут привести меня на Марс или к далеким звездам. Внезапно у меня появилась странная новая мысленная картина — самого себя, живущего в этом квантовом мире. Я начал понимать, что квантовая теория намного более заумна, чем сложнейшие следствия теории относительности.)

Когда Фейнман разработал эту причудливую формулировку, Уилер, который тогда был в Принстонском университете, бросился в Институт передовых исследований к Эйнштейну, чтобы попытаться убедить его в элегантности и мощи этой новой картинки. Уилер взволнованно объяснил Эйнштейну новую теорию Фейнмана об обобщении интегралов по траекториям. Он не осознавал полностью, насколько дико эти слова прозвучали для Эйнштейна. Впоследствии Эйнштейн качал головой и повторял, что он все же не верит в то, что Бог играет в кости с миром. Эйнштейн признался Уилеру, что мог и ошибаться, но настаивал на том, что он вполне заработал себе право ошибаться.

Друг Вигнера
Большинство физиков пожимают плечами и разводят руками, сталкиваясь с заумными парадоксами квантовой механики. Для большинства практикующих ученых квантовая механика — это набор кулинарных правил, результатом применения которых являются правильные вероятности, определяемые со сверхъестественной точностью. Джон Полкингхорн, физик, ставший священником, сказал: «Средний квантовый механик философичен не в большей мере, чем обычный механик».

Однако некоторые из глубочайшихфизиков-мыслителей боролись с этими вопросами. Например, существует несколько способов разрешения шрёдингеровской проблемы кота. Первый был предложен Нобелевским лауреатом Юджином Вигнером и другими — сознание определяет существование. Вигнер написал, что «невозможно было полностью последовательно сформулировать законы квантовой механики без учета сознания [наблюдателя]… само изучение внешнего мира вело к заключению, что содержание сознания является высшей реальностью». Или, как когда-то написал поэт Джон Ките, «Ничто не реально до тех пор, пока не испытано».

Но если я совершаю наблюдение, то что должно определить, в каком состоянии нахожусь я? Это означает, что кто-то еще должен наблюдать за мной, заставляя мою волновую функцию коллапсиров-вать. Иногда этого «кого-то» называют «другом Вигнера». Но это также означает, что кто-то должен наблюдать и за другом Вигнера, и за другом друга Вигнера, и так далее. Существует ли космический Разум, определяющий, наблюдая за всей Вселенной, полную последовательность «друзей»?

Андрей Линде, один из создателей инфляционной теории, — , представитель тех физиков, которые упорно верят в центральную роль сознания: Я как человеческое существо не вижу ни единого довода, на основании которого я мог бы заявить, что Вселенная находится здесь в отсутствие наблюдателей. Мы вместе — мы и Вселенная. Когда говорят, что Вселенная существует без всякихнаблюдателей, я не вижу в этом никакого смысла. Я не могу представить связную теорию всего, в которой игнорируется сознание. Записывающее устройство не может играть роль наблюдателя, поскольку кто прочтет то, что записано на этом устройстве? Чтобы мы увидели, что что-либо происходит, и сказали друг другу, что что-либо происходит, нужна Вселенная, нужно записывающее устройство, нужны мы… В отсутствие наблюдателей Вселенная мертва…


Согласно философии Линде, окаменелости динозавров не существуют до тех пор, пока на них не взглянешь. Но если на них взглянуть, то они «впрыгивают» в существование, как будто они существовали миллионы лет назад. (Физики, придерживающиеся этой точки зрения, достаточно внимательны, чтобы указывать на то, что эта картина экспериментально соответствует тому миру, в котором окаменело-стям динозавров и вправду миллионы лет.)

(Некоторые люди, не одобряющие введение фактора сознания в физику, заявляют, что камера может совершать наблюдение электрона, а потому волновые функции могут коллапсировать и без участия сознательных существ. Но тогда кто скажет, что камера существует? Нужна еще одна камера, чтобы «наблюдать» за первой камерой и заставить коллапсировать ее волновую функцию. Затем необходима вторая камера, чтобы наблюдать за первой, третья, чтобы наблюдать за второй, и так до бесконечности. Такое введение камер не отвечает на вопрос о том, каким образом коллапсирует волновая функция.)
Декогеренция

Способом практического разрешения этих тернистых философских вопросов, завоевывающим все большую популярность среди физиков, является декогеренция. Впервые это понятие было сформулировано немецким физиком Дитером Не в 1970 году. Он заметил, что в реальном мире нельзя отделить кота (все того же) от окружающей среды. Кот находится в постоянном контакте с воздухом, коробкой и даже космическими лучами, которые пронизывают эксперимент. Вне зависимости от того, насколько малы эти взаимодействия, они оказывают радикальное влияние на волновую функцию: если волновая функция нарушена хотя бы в незначительной степени, то она распадается на две волновые функции мертвого кота и живого кота, которые более не взаимодействуют. Це показал, что столкновения с одной-единственной молекулой воздуха достаточно, чтобы волновая функция коллапсировала, вызвав немедленное разделение волновых функций живого кота и мертвого, которые больше не взаимодействуют друг с другом. Иными словами, еще до того, как вы откроете коробку, кот уже вступил в контакт с молекулами воздуха и отсюда уже жив или мертв.


Це принадлежит ключевое наблюдение, он заметил то, что было упущено: чтобы кот был одновременно и мертв, и жив, его волновая функция должна вибрировать с практически полной синхронизацией, это состояние называется когеренцией. Но экспериментально это практически невозможно. Создать когерентные объекты, вибрирующие в унисон, в лабораторных условиях чрезвычайно сложно. (В действительности сложно получить больше горсточки когерентно вибрирующих атомов из-за взаимодействия с внешним миром.) В реальном мире объекты взаимодействуют с окружающей средой, и малейшее взаимодействие с внешним миром может нарушить две образевавшиеся волновые функции и они начнут «декогерировать», то: есть рас синхронизируются и разделятся. Це показал, что, как только две волновые функции перестают вибрировать в фазе друг с другом, они более не взаимодействуют между собой.
Многие миры
Поначалу понятие декогеренции кажется весьма удовлетворительным: теперь волновая функция коллапсирует не через сознание, а через беспорядочное взаимодействие с внешним миром. Но это все же не решает фундаментального вопроса, беспокоившего еще Эйнштейна: как природа «выбирает», в какое состояние коллапси-ровать? Когда молекула воздуха ударяет кота, кто или что определяет финальное состояние кота? По этому вопросу теория декогеренции просто утверждает, что две волновые функции разделяются и более не взаимодействуют между собой, но она не отвечает на первоначальный вопрос: мертв кот или жив? Иными словами, декогеренция делает присутствие сознания ненужным в квантовой механике, но она не решает вопрос, беспокоивший Эйнштейна: каким образом природа «выбирает» финальное состояние кота? В ответ на этот вопрос теория декогеренции просто хранит молчание.

Однако существует естественное расширение декогеренции, которое разрешает данный вопрос; сегодня оно приобретает все более широкое признание среди физиков. Этот подход был предложен еще одним учеником Уилера, Хью Эвереттом III, который оговорил возможность того, что кот может быть одновременно и жив, и мертв в двух различных вселенных. Когда в 1957 году Эверетт закончил свою диссертацию, ее едва заметили. Однако с течением времени интерес к теории «многих миров» начал расти. Сегодня эта теория вызвала прилив обновленного интереса к парадоксам квантовой теории.


Согласно этой совершенно новой интерпретации, кот одновременно и жив, и мертв по той причине, что Вселенная распалась на две. В одной вселенной кот мертв; в другой он жив. В сущности, в каждый момент времени вселенная расщепляется надвое, становясь звеном в бесконечной череде расщепляющихся вселенных. Согласно этому сценарию, все вселенные возможны, каждая из них так же реальна, как и любая другая. Люди, живущие в каждой вселенной, могут яростно утверждать, что именно их вселенная реальна, а все остальные лишь воображаемые или ненастоящие. Эти параллельные вселенные — не эфемерно существующие призрачные миры; в каждой вселенной мы видим столь же реальные и объективные твердые предметы и столь же реальные и объективные конкретные события, как и в любой другой.

Преимуществом этой интерпретации является тот факт, что мы можем опустить условие номер три — коллапс волновой функции. Волновые функции никогда не коллапсируют, они продолжают развиваться, вечно распадаясь на новые и новые волновые функции в бесконечном древе распада, каждая ветвь которого представляет целую вселенную. Большим преимуществом теории многих миров является то, что она проще, чем Копенгагенская интерпретация: здесь не нужен коллапс волновой функции. Но цена, которую мы платим за это, та, что теперь у нас есть вселенные, все время распадающиеся на миллионы ветвей. (Некоторым сложно понять, каким образом вести учет всех этих множащихся вселенных. Однако волновое уравнение Шрёдингера решает это автоматически. Отслеживая развитие волнового уравнения, мы сразу находим все многочисленные ветви волны.)

Если эта интерпретация верна, то в этот самый момент ваше тело сосуществует с волновыми функциями динозавров, сцепившихся в смертельной схватке. Вместе с вами в комнате сосуществует волновая функция того мира, в котором немцы выиграли Вторую мировую войну, в котором бродят инопланетные пришельцы, в котором вы никогда так и не родились. Среди вселенных, существующих в вашей гостиной, находятся и миры «Человека в высоком замке» и «Сумеречной зоны». Загвоздка в том, что мы не можем с ними больше взаимодействовать, поскольку они от нас декогерировали.


Как сказал Алан Гут, «существует вселенная, где Элвис все еще жив». Физик Франц Вильчек написал: «Нас преследует сознание того, что бесконечное количество чуть-чуть отличающихся от нас копий нас самих живет своими параллельными жизнями, а также того, что в каждый момент еще больше двойников начинают свое существование, занимая место в одном из наших возможных вариантов будущего». Он замечает, что история греческой цивилизации, а отсюда и всего западного мира, могла быть иной, если бы Елена Троянская была не такой пленительной красавицей, а имела уродливую бородавку на носу. «Что же, бородавки могут возникнуть как результат мутаций в отдельных клетках, часто вызванных пребыванием под лучами солнца, несущими ультрафиолет». Он продолжает: «Вывод; существует много, много миров, в которых у Елены Троянской была бородавка на кончике носа».

Мне вспоминается отрывок из классического научно-фантастического произведения Олафа Стэплдона «Создатель звезд»: «Каждый раз, когда существо встречалось с несколькими возможными путями действия, оно избирало их все, таким образом создавая много… самостоятельных историй космоса. Ибо в каждом процессе эволюционного развития в космическом пространстве существовало много созданий, и каждое из них постоянно сталкивалось с выбором из многих возможных путей, и комбинации всех этих путей были бесчисленны, представляя собой бесконечность отдельных вселенных, отслаивающихся в каждый момент каждого отрезка времени».

Голова идет кругом, когда мы понимаем, что, согласно этой интер-: претации квантовой механики, все возможные миры сосуществуют вместе с нами. Хотя для того, чтобы достичь иных миров, может понадобиться портал-червоточина, эти квантовые реальности существуют в той самой комнате, где мы живем. Они сосуществуют с нами, куда бы мы ни пошли. Ключевой вопрос вот в чем: если это правда, то почему мы не видим эти иные вселенные, наполняющие нашу гостиную? А вот здесь вступает в дело декогеренция: наша волновая функция декогерировала с этими иными мирами (то есть эти волны больше не находятся в фазе друг с другом). У нас больше нет контакта с ними. Это означает, что даже малейшее взаимодействие с окружающей средой исключит взаимодействие различных волновых функций друг с другом. (В главе 11 я привожу возможное исключение из этого правила, с помощью которого разумным существам может удаться путешествие между квантовыми реальностями.)


Не кажется ли это слишком странным, чтобы быть возможным? Нобелевский лауреат Стивен Вайнберг проводит параллель между этой теорией многих вселенных с радио. Вокруг вас сотни различных радиоволн, передаваемых далекими станциями. В любой заданный момент ваш офис, машина или гостиная заполняется этими радиоволнами. Однако если вы включите приемник, то сможете слушать радиоволны только на одной частоте в данный момент; остальные частоты декогерировали и больше не находятся в фазе друг с другом. Каждая станция обладает различной энергией, различной частотой. В результате ваш приемник в данный момент времени может принимать вещание только на одной частоте.

Подобным образом в нашей вселенной и мы «настроены» на частоту, которая соответствует физической реальности. Но есть бесконечное количество параллельных реальностей, сосуществующих в одной комнате вместе с нами, хотя мы не можем «настроиться на них». Эти миры очень похожи друг на друга, но в каждом из них атомы обладают различной энергией. А поскольку каждый мир состоит из триллионов и триллионов атомов, это означает, что различие в энергии может быть довольно велико. Поскольку частота этих волн пропорциональна их энергии (по закону Планка), то это означает, что волны каждого мира вибрируют с различной частотой и больше не могут взаимодействовать. Фактически волны этих различных миров не взаимодействуют друг с другом и не влияют друг на друга.

Что удивительно, принимая эту странную точку зрения, ученые могут прийти ктем же результатам, что и с помощью Копенгагенского подхода, без всякой нужды в коллапсе волновой функции. Иными словами, эксперименты, проведенные как в соответствии с Копенгагенской интерпретацией, так и в соответствии с интерпретацией теории многих миров, принесут в точности совпадающие результаты. Коллапс волновой функции Бора в математическом отношении эквивалентен действию окружающей среды. Иными словами, кот Шрёдингера может быть мертв или жив одновременно, если мы каким-либо образом изолируем кота от возможного воздействия каждого атома или космического луча. Конечно, на практике это неосуществимо. Как только кот вступит в контакт с космическим лучом, волновая функция живого кота и волновая функция мертвого кота декогерируются и будет казаться, что волновая функция коллап-сировала.


<< предыдущая страница   следующая страница >>